	

	

	

	

	
	

	Methodology for
Evaluation of Collaboration Systems

	

	Version 1

	John Cugini

Laurie Damianos

Lynette Hirschman

Robyn Kozierok

Jeff Kurtz

Sharon Laskowski

Jean Scholtz

	

	The Evaluation Working Group of
The DARPA Intelligent Collaboration and Visualization Program
Revision 4.0: 12 April 1999
Submit or view comments at
http://www.antd.nist.gov/~icv-ewg/forum.html

	Version 4.0, Revised July 15, 1999

Jill Drury

Laurie Damianos

Tari Fanderclai

Jeff Kurtz

Lynette Hirschman

Frank Linton

The MITRE Corporation, Bedford, MA

	

	

	

Table of Contents

Section
Page

1. 1Introduction

1.1 Background: The Defense Advanced Research Project Agency (DARPA) Intelligent Collaboration and Visualization (IC&V) Program
1
1.2 Background: The Evaluation Working Group and Its Aims
2
1.3 The Scope and Structure of this Document
3
2. Context and Definitions
5
2.1 Introduction
5
2.2 Methods of Interface Evaluation
5
2.3 Use of Scenarios
6
2.4 Definition of Terms
7
2.4.1 Collaborative Environments
7
2.4.2 Tasks or Collaborative Activities
8
2.4.3 Scenarios
8
3. A Framework for Collaborative Systems
9
3.1 Introduction
9
3.2 Overview of the Collaborative Framework
9
3.3 Using the Framework to Begin Evaluating a CSCW System
11
3.3.1 General Evaluation Approaches Using the Framework
11
3.3.2 Using the Framework at Each Level
12
3.4 Detailed Framework Description
12
3.4.1 Requirement Level
12
3.4.1.1 Work Tasks
12
3.4.1.2 Transition Tasks
13
3.4.1.3 Social Protocols
13
3.4.1.4 Group Characteristics
15
3.4.1.5 Requirements Level Measures
16
3.4.2 Capability Level
16
3.4.3 Service Level
20
3.4.4 Technology Level
21
3.5 Collaborative Tasks
22
3.6 Summary of Collaborative Framework
23
4. Scenarios for Evaluation of Collaboration Tools
31
4.1 Introduction
31
4.2 Constructing Scenarios
32
4.3 Choosing Scenarios
33
4.4 Using Scenarios for Evaluation
33
4.4.1 Using Scenarios to Iteratively Evaluate a Single System
33
4.4.2 Using Scenarios to Evaluate a System’s Appropriateness for Your Requirements
34
4.4.3 Using Scenarios to Compare Systems
34
5. Metrics and Measures
35
5.1 Introduction
35
5.2 Metrics
37
5.2.1 Data Collection Methods
42
5.3 Measures
43
5.4 Data Collection Methods: Logging
48
6. Using the Methodology to Design an Experiment
51
6.1 Introduction
51
6.2 Designing an Experiment
51
6.3 An Example: The Map Navigation Experiment
53

Section 1

 SEQ Level1 \r 0 \h

 SEQ Level2 \r 0 \h

 SEQ Level3 \r 0 \h

 SEQ Level4 \r 0 \h

 SEQ figure \r 0 \h

 SEQ table \r 0 \h
Introduction

This document outlines a two-part methodology for evaluating collaborative computing systems. In the first part of the methodology, the researcher uses our framework to analyze and describe a given collaborative computing system in terms that reveal the capabilities of the system and allow preliminary judgments about the kinds of work tasks the system might best support. In the second part, the researcher asks subjects to use the system being evaluated to run scenarios representing the kinds of work tasks highlighted by the initial analysis, and/or the kinds of work tasks a group of potential users need support for. These scenarios help the researcher evaluate how well the system actually supports the work tasks in question.

This methodology was developed to provide a reliable but inexpensive means of evaluating collaborative software tools. At a relatively low cost, researchers in the collaborative computing research community can evaluate their own or others’ collaborative tools, and user groups can determine their requirements and ascertain how well a given collaborative system supports their work.

1.1

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Background: The Defense Advanced Research Project Agency (DARPA) Intelligent Collaboration and Visualization (IC&V) Program

The DARPA Intelligent Collaboration and Visualization program (IC&V) has the goal of developing the generation-after-next collaboration middleware and tools that will enable military components and joint staff groups to enhance the effectiveness of collaborations by:

· Gathering collaborators together across time and space for rapid response in time-critical situations

· Bringing appropriate information resources together across time and space within the context of a task

The IC&V program has funded a number of groups to develop collaborative technologies to address these objectives; it has also devoted funds to establishing evaluation metrics, methodologies and tools. The IC&V program objectives are:

1. Enable access to collaborative systems via diverse portals, from hand-held through room-sized.

2. Enable interoperability across systems using diverse encoding formats, coordination and consistency protocols, and real-time services.

3. Scale collaborations to 10 active contributors, 100 questioners, and 1000 observers.

4. Reduce by an order of magnitude the time needed to generate collaborative applications.

5. Enable real-time discovery of relevant collaborators and information within task context.

6. Reduce by an order of magnitude the time required to establish collaborative sessions across heterogeneous environments.

7. Reduce by an order of magnitude the time required to review collaborative sessions.

8. Improve task-based performance of collaborators by two orders of magnitude.

The effectiveness of the overall IC&V program will be evaluated with respect to these high-level objectives. The Evaluation Working Group (EWG) of the IC&V program was established to support implementation of the evaluation of collaborative tools developed under IC&V. The EWG will develop the evaluation metrics and methodology, and will develop, or guide the development of, specific tests and tools for achieving effective and economical evaluation of the collaborative technologies that make up the IC&V program.

1.2

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Background: The Evaluation Working Group and Its Aims

The original Evaluation Working Group included researchers with diverse backgrounds and interests from several sites: Carnegie Mellon University (CMU), The MITRE Corporation, National Imagery and Mapping Agency (NIMA), National Institute of Standards and Technology (NIST), and Amerind.
 The EWG’s primary task is to define and validate low-cost methods of evaluating collaborative environments, so that researchers can use these methods to evaluate research products and users can use these methods to choose collaborative systems that will best suit their needs. This objective is further refined into a set of goals as follows:

1. To develop, evaluate, and validate metrics and methodology for evaluating collaborative tools.

2. To provide reusable evaluation technology, such that research groups can assess their own progress.

3. To provide evaluation methods that are cheap relative to the requirements.

4. To apply DOD-relevant criteria when evaluating collaborative systems relevant to areas such as:

Planning/design/analysis domains

C2 environments to capture planning/reaction/replanning cycle

Disaster relief exercises

Collaborative information analysis activities

5. To define an application vision that will drive collaborative computing research.

The technologies supported under the IC&V program range from infrastructure technologies at the level of networking and bus protocols, to middleware for providing easy interoperability, to user-oriented collaborative tools. Given this wide range of technologies and the background of the EWG members, the EWG has decided to focus on the user-oriented end of the spectrum. In addition, specific interests of various EWG members (NIST, in particular) may lead to subgroups working in the area of infrastructure technology evaluation, especially as these areas affect the user level (e.g., sensitivity to network load may limit number of participants in a collaborative session). Currently, there are no plans for the EWG to provide evaluation metrics aimed at the software infrastructure; e.g., how easy it is to make a new application collaborative, or how a given layer of middleware might enhance interoperability. These are clearly important issues that will affect the long-term success of the program, but they lie outside the scope of the EWG as it is currently constituted.

1.3

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT The Scope and Structure of this Document

This document was developed to encode agreements of the IC&V Evaluation Working Group as we develop a framework and methodology for evaluation of the IC&V technologies.

The IC&V program is not targeted at a specific collaboration problem. Rather, the challenge for the EWG is to provide an evaluation methodology that can be applied across the diverse IC&V research projects and approaches to collaboration. Researchers need tools to measure the incremental progress towards developing useful collaborative systems, as well as methods to evaluate the impact of specific technologies on the effectiveness of collaboration. Users need ways in which to determine which collaborative software systems could meet their needs.

We present a scenario-based approach to evaluation. The long-term goal of the EWG is to develop a repository of scenarios that are scripted for a collaborative community and enacted using the technologies under evaluation. Since the technologies are diverse, the scenarios must be generic enough to provide meaningful evaluation across multiple research projects. Enacting the scenarios will provide data for the functional evaluation and also provide exercise tools developed for the technology evaluation. Different scenarios will exercise different aspects of collaborative work, such as number of participants, kind of shared objects, and ways participants need to interact with each other and with the shared objects.

The remaining sections of this document are structured as follows. Section 2 situates this methodology in the context of current evaluation approaches from human-computer interface (HCI) and computer-supported cooperative work (CSCW) research, and discusses the rationale for scenario-based evaluation. It also defines critical terminology for use in the remainder of the document.

Section 3 presents a framework that defines the design and implementation space for collaborative systems. It includes a set of generic task types that can be used to construct scenarios.

Section 4 discusses the concept of a scenario as a vehicle for simulating a collaborative activity for purposes of evaluation. Our approach to exercise and evaluate specific collaborative technologies requires selection of appropriate scenarios. Section 4 describes methods for using scenarios for purposes such as iterative evaluation, assessment of system appropriateness, and comparison of systems.

Section 5 discusses a range of suggested metrics and measures for evaluating collaborative technologies at various levels and illustrates these with several examples.

Section 6 includes a discussion of how the methodology can be used to design an experiment.

Section 2

 SEQ Level1 \r 0 \h

 SEQ Level2 \r 0 \h

 SEQ Level3 \r 0 \h

 SEQ Level4 \r 0 \h

 SEQ figure \r 0 \h

 SEQ table \r 0 \h
Context and Definitions

2.1

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Introduction

This section provides additional background for the remainder of this document. The first subsection looks at related evaluation efforts from the HCI and CSCW communities. The second subsection introduces the scenario-based approach, and the third subsection defines our terminology.

2.2

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Methods of Interface Evaluation

Evaluations of human-computer interaction have traditionally been done by a number of methods, including field studies, laboratory experiments, and inspections. Each method assesses different aspects of the interfaces and places different demands on the developer, user, and evaluator.

Evaluations of collaborative technology are done best through field evaluations because they can, among other things, be used to assess social-psychological and anthropological effects of the technology (Grudin 1988). Field studies unfortunately require substantial funding, a robust system, and an environment that can accommodate experimental technology. These three conditions are difficult to satisfy, and so researchers turn to less onerous means, such as inspection methods and laboratory exercises.

System inspections, such as cognitive walk-through (Polson et. al. 1992), heuristic evaluation (Nielsen and Molich 1990), and standards inspection (for example, Open Software Foundation Motif inspection checklists), employ a set of usability guidelines written by usability experts. There exists a fairly large set of guidelines for user interface design and single user applications, but few guidelines are available for multi-user applications or collaborative technology. Also, these methods are largely qualitative, not quantitative, and require HCI expertise that may not always be available.

This leaves laboratory experiments, or empirical testing, which as an evaluation technique more closely relates to field studies than inspection techniques. Experiments are very appealing for new and rapidly evolving technology and are potentially less expensive than field studies. However, since they are conducted in controlled environments with time restrictions they less accurately identify dynamic issues such as embedding into existing environments, learning curves, and acculturation. Watts et al. (1996) recommend compensating for this flaw by performing ethnographic studies followed by laboratory experiments. The ethnographic study helps evaluators understand the “work context” which influences what is measured and observed in the laboratory.

A generic process cannot presuppose a specific work context. Rather, we have chosen to develop scenarios and measures based on high-level collaborative system capabilities, to provide broad applicability across a range of applications. Ethnographic studies related to specific work contexts could provide a useful tool for validating the measures, because some measures may not be appropriate or of interest in certain contexts.

2.3

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Use of Scenarios

A scenario is an instantiation of a generic task type, or a series of generic tasks linked by transitions. It specifies the characteristics of the group that should carry it out, and the social protocols that should be in place. It describes what the users should (try to) do, but not usually how they should do it. (Note that scenarios can be scripted in various degrees of detail and thus could constrain evaluator’s choices for how they accomplish tasks; scripts will be discussed later in this document.)

Scenarios are used in laboratory experiments to direct system usage. They are versatile tools that can be used for many development activities including design, evaluation, demonstration, and testing. When used for evaluation, scenarios exercise a set of system features or capabilities.

We would like to define general, reusable scenarios for collaborative technologies. This is a challenge, requiring consideration of a large set of technologies, but we can build on earlier work in this area.

In 1995, researchers met at the European Human-Computer Interaction (EHCI) conference to develop scenarios that could be used to design, evaluate, illustrate, and compare CSCW systems (Bass 1996). Their approach was to define generic tasks that would be used to construct technology specific scenarios. The tasks they described were mostly single user activities such as joining a conference, setting up a new group, and integrating a system with a collaborative tool.

Our approach begins by defining collaborative system capabilities or functional requirements. Our “capabilities” are defined at a higher level than the tasks defined by the EHCI researchers. The tasks we use to evaluate the capabilities are combined to build scenarios that are much more general than those described by the EHCI group. Consequently, the scenarios are appropriate vehicles for cross-technology comparisons. Many of the scenarios can be segmented if the complete scenario is too large to use for comparisons. Also, general scenarios can be readily adapted for any system that supports the capabilities required by the scenario.

Nardi (1995), who has extensively studied the use of scenarios for interface design, has argued for a provision to create a library of reusable scenarios. We will begin to populate such a library with scenarios that are technology-independent. Technology-specific scenarios could be added when scenarios are specialized for real systems.

2.4

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Definition of Terms

This evaluation program is concerned with the three principle variables of participants, collaborative environments and collaborative activities. It is easy to say that participants are actors who engage in collaborative activities. Classifying collaborative environments and activities in meaningful ways takes a bit more work.

2.4.1

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Collaborative Environments

A collaborative environment is a system that supports users in performing tasks collaboratively. It may be a particular piece of software, such as Lotus Notes or MITRE's Collaborative Virtual Workspace (CVW), or it may be a collection of components used together to enable collaboration.

We are charged with the task of providing an evaluation methodology for collaborative computing systems, present and especially future. Part of our approach involves examining the types of things an environment allows one to do in support of collaboration. To describe them, we must define these terms: requirement, capability, service, and technology.

Requirements for collaborative systems refer to the high level goals that a group needs to accomplish. For example, “I need to keep my colleagues informed of my progress on this project.”

Collaborative capabilities are relatively high-level functions that support users in performing particular collaborative tasks. Examples are concepts such as synchronous human communication, persistent shared object manipulation, archival of collaborative activity, etc.

The term service is used to describe the means by which one or more collaborative environments achieve a given capability, and technology is used to describe the particular hardware and/or software implementation of a service. For example, a service is email, and a technology is Eudora.

To tie together the four components of collaborative environments, consider the following. To satisfy the requirement of sharing information with colleagues, a group could use the collaborative capability of synchronous human communication. One service that may be used to achieve the goal in a variety of collaborative environments is audio conferencing. One technology for audio conferencing is Lawrence Berkeley Laboratory’s Visual Audio Tool.

Examining which requirements and capabilities a collaborative environment supports, and the services and specific technologies it uses to do so, is one way of generating a functional categorization of the collaborative environment. The categorization can be used to help determine which collaborative systems may be best suited for the proposed activities and which scenarios can be used to evaluate those systems.

2.4.2

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Tasks or Collaborative Activities

Tasks or collaborative activities are what people do, or wish to do, together.

We use the term task synonymously with collaborative activity. Task is a term that transcends the level of detail at which the activity is described; task may refer to anything from a real activity that people are engaging in to a highly scripted mock-up of such an activity intended strictly for evaluation purposes.

A general work task (hereafter referred to as simply a “work task”) is a particular objective of a group, such as making a decision, disseminating information, or planning for the next phase of a project. A work task decomposition based on McGrath’s categorization (McGrath 1984) is discussed in Section 3 to aid in generating specific measures and anticipated needed capabilities and services. A transition task is the activity necessary to move from one objective to another. For example, starting up a session, summarizing results of a decision, reporting the decision to absent colleagues, and assigning action items constitute transition tasks. Social protocols constitute attributes of work tasks, and are those activities that directly facilitate the interpersonal management of joint work, such as floor control and access control mechanisms. Group characteristics such as size, homogeneity, and collocation versus non-collocation affect how tasks can be performed.

2.4.3

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Scenarios

Several different types of descriptions of mocked-up activity can be used during evaluations. At the highest level we have the scenario. This is a high-level description of a collaborative task that subjects might be asked to engage in to test collaborative systems. A fully specified scenario will include the background documentation, instructions, etc. required to have a subject or subjects enact the scenario. Scenarios are often broken down into their constituent tasks. In some cases it will be possible to do evaluations based upon only a subset of the tasks for a given scenario.

Some evaluation goals are better met by precisely repeatable scenarios, perhaps even by automated actors. For this purpose there are scripted scenarios, which are procedural descriptions of scenarios. Scripts can be written at levels corresponding to technologies, services, or capabilities.

Section 3

 SEQ Level1 \r 0 \h

 SEQ Level2 \r 0 \h

 SEQ Level3 \r 0 \h

 SEQ Level4 \r 0 \h

 SEQ figure \r 0 \h

 SEQ table \r 0 \h
A Framework for Collaborative Systems

3.1

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Introduction

The framework outlined in this section provides a structured way of thinking about collaborative systems and the evaluation of those systems. The framework can aid the researcher in making some preliminary judgments about a system or its usefulness to a particular group; for example, the framework can identify systems that are likely or unlikely to support a group’s work, thus narrowing down the number of systems to be further investigated using the scenario-based portion of the methodology. The framework can also aid in choosing scenarios for a scenario-based evaluation of a system.

This framework builds on one devised by Pinsonneault and Kraemer (1989) to analyze the impact of technology on group process while controlling for the effect of other contextual variables. We have merged the work of McGrath (1984) into our expanded framework to enable us to classify tasks that groups perform.

This section includes an overview of the framework and a description of how the framework can be used to describe and evaluate CSCW systems. We also provide detailed descriptions of each level of the framework.

3.2

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Overview of the Collaborative Framework

The framework is divided into four levels: requirement, capability, service, and technology.

The requirement level of the collaborative framework is composed of requirements generated from the tasks being performed by the group and the support necessitated by the characteristics of the group. Requirements for supporting different types of groups include support for the social interactions of the group as well as the requirements due to group size, location, computer platforms, etc. The requirement level includes both work tasks and transition tasks (described below).

The capability level of the framework describes functionality that is needed to support the different requirements. The functionality described in capabilities can be obtained from different services. For example, the capability to synchronously communicate with another meeting participant during an electronic meeting could be accomplished by a text chat service or by telephone service. Certain capabilities may be necessary or recommended to support work and transition tasks, social protocols, and group characteristics in the requirement level.

The service level describes services such as e-mail, audio, video, application sharing, and networking services, that can be used to support the capabilities needed in CSCW systems. Different types of services can be used to provide the same capabilities that support specific requirements. For example, a need for synchronous, non-collocated communications could be satisfied by text chat or video teleconferences. Comparisons and tradeoffs of performance and cost can be made at this level.

The technology level describes specific implementations of services. This level could be considered to be the set of possible components needed to build a given CSCW system, as well as their integration and interfaces. For example, different e-mail systems would exist at this level, as would the numerous ways to implement floor control, the various algorithms to control documentation locking and requesting, and the various networking services such as ATM. Specific implementations can be compared with respect to performance, cost, functionality, and usability.

[image: image1.wmf]Collaborative Framework

Contents

Work Tasks

Transition Tasks

Group

Characteristics

Social Protocols

Requirement Level

Metrics

Task Outcome

Efficiency,

Scalability

User Satisfaction

Security

Technology Level

Service Level

Capability Level

Contents

Shared Workspace

Shared View

N-way

Communication

Contents

Whiteboards

Application Sharing

Text Chat

3D Visualization

Contents

Specific

Implementations

User Interface

Metrics

Distribution of

Participation

Floor

Control/Access

Object Sharing Cost

Time on Task

Metrics

Quality of Service

Audio Quality

Video Quality

Image Quality

Metrics

Benchmarks:

Bandwidth

Throughput

Usability Measures

 Figure 1. The Collaborative Framework

3.3

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Using the Framework to Begin Evaluating a CSCW System

3.3.1

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT General Evaluation Approaches Using the Framework

The framework can be used for evaluation in a top-down (requirement to technology level) approach, a bottom-up (technology to requirement level) approach, or a “middle out” approach.

Depending on the approach taken, the framework may, for example, help an evaluator select a subset of the evaluation tools a group needs to chose from; systems that do not meet or exceed acceptable levels for the measures available at a given level can be eliminated from further consideration. Or the framework may help a researcher determine whether a particular system could support a particular group adequately, or understand whether and how to implement missing functionality in a system.

A top-down approach allows evaluators to match requirements of the group to the tools needed to support collaborative efforts. To perform a top-down evaluation, users would begin with a top-level requirement such as “we need to work together even though half our group is in Toronto and half is in Amsterdam.” The users would then decide which capabilities they need to support their group work, such as synchronous non-collocated meeting support and asynchronous document transfer. They would then look at services to provide these two types of capabilities, such as text chat and email. Finally, the users would evaluate at the technology level whether systems such as MITRE’s CVW or America On Line (AOL) Instant Messenger would provide the necessary text chat performance and features, and similarly evaluate systems such as Netscape Mail and Eudora for email needs.

A bottom-up approach allows evaluators to determine the types of collaboration requirements that a given system can support best. For example, a researcher may need to investigate a newly developed tool—which exists at the technology level—to find out whether it answers the need it was developed to meet, and whether it answers other requirements as well. The researcher would move up through the collaborative framework, first deciding what services the tool provides, then abstracting to the more general capabilities, and finally determining the top-level requirements that the tool satisfies.

A “middle-out” evaluation begins either at the capabilities or services level. Such an evaluation could be used whenever there are questions regarding whether missing functionality should be included in a system, or how some capabilities could be used. For example, researchers who would like to know the effectiveness of incorporating a new pointing feature in a shared whiteboard might use a middle-out evaluation. The “middle-up” portion of the evaluation would involve determining what requirements such a new feature would satisfy. The “middle-down” portion of the evaluation would result in guidance for how to implement such a feature at the detailed technology level.

3.3.2

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Using the Framework at Each Level

At the requirement level we can evaluate how well a CSCW system supports the work tasks, the transition tasks, the social protocols, and the characteristics of a specific group in general. We can also evaluate the artifacts produced as well as the process the group used to produce an artifact. The detailed framework description (Section 3.4) describes the measures for task outcome for each task type. It is important to note that the variables being measured differ depending on the type of task the group is doing. For example, different measures are needed to evaluate the outcome of a brainstorming task than to evaluate the outcome of a planning task. (See Section 5 for a more thorough discussion of measures.)

At the capability level, researchers and potential users of a system may evaluate the appropriateness of specific capabilities to support the work tasks, transition tasks, social protocols, and characteristics of the group. To obtain answers to these questions, measures such as time on task, awareness questions, amount of setup time for equipment and configuration are used.

At the service level, framework users will examine the functionality of various types of services to understand how a given capability would be supported using a particular type of service. This allows users to compare services in order to determine which service seems most appropriate for the requirements. Performance thresholds, including robustness, can be examined at this level. Tests such as the ability to view an image with a certain amount of discrimination and the acceptability of audio or video can be conducted at this level.

At the technology level, specific implementations exist. Therefore, actual usability measures can be examined for an implementation. The implementations of the services can be evaluated to make sure they meet threshold values. Performance comparisons can be made at this level between different implementations.

3.4

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Detailed Framework Description

3.4.1

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Requirement Level

The following requirement level description is based on its contents: work tasks, transition tasks, social protocols, and group characteristics.

3.4.1.1

 seq Level4 \r 0 \h * MERGEFORMAT Work Tasks

Work tasks are the heart of a collaboration—the work that people need to do to meet their collaborative goals.

Work tasks include activities such as solving a problem, developing a plan, disseminating information, negotiating, and reaching consensus.

3.4.1.2

 seq Level4 \r 0 \h * MERGEFORMAT Transition Tasks

Transition tasks are tasks used to move between work tasks. They may include summarizing the outcome of the last task, assigning action items to members of the group, and noting dates for expected completion of assignments. The beginning and ending of any group collaboration involve transition tasks such as taking roll, requesting changes to an agenda, and locating missing meeting participants. Transition tasks also apply to asynchronous collaborations. A group member may suggest that the e-mail discussions about a particular subject end and volunteer to summarize the discussion and distribute this to group members; or a new person may join the meeting and need to get “caught up.”

A transition task may occur formally or informally, depending on the social protocol that the group is using. Transitions to the next work task occur formally if the chair of the group either moves the group to the next agenda item or the group votes to move to the next item. Informal transitions to the next work task occur when the group moves the discussion rather naturally to another topic or starts another group activity.

3.4.1.3

 seq Level4 \r 0 \h * MERGEFORMAT Social Protocols

Social protocols define the ways in which collaborative sessions are conducted. Collaborative sessions may vary from informal sessions to very formal sessions with a chair, an agenda that is strictly followed, and rules of order. In the context of meeting support, for example, social protocols support role management, floor control, and other basic meeting conduct activities. Table 1 lists example parameters that social protocol requirements support for meetings.

Table 1. Example Parameters for Social Protocols During Meetings

	Meeting Component
	
Parameters

	Chair
	None, loose control, tight control

	Agenda
	None, modifiable, non-modifiable (strict)

	Rules of order
	Used, not used

	Titles
	Yes, no, anonymous

	Floor control
	Dictated by agenda, directed by chair, informal turn-taking, free-for-all

	Hierarchy support
	Voting, contributing-restricted, contributing-free access, observing only

	Communication support
	Private or public, 1-way or n-way

	Security
	From none to highly classified (e.g., top secret special compartmented information)

Social protocols may also support awareness of other group members’ presence, activities, locations, temporality, and motivations. There are several different ways to organize awareness components; the approach used by Villegas and Williams (1997) is used in Table 2.

Table 2. Example Awareness Components and Questions for Social Control

	Awareness Component
	
Awareness: Top-Level and Subordinate Questions

	Presence: Who?
	Who else is in the workspace?

	
	
Can the user tell who else is logged into the session?

	
	
Can the user tell whether anyone else is working on the collaborative task?

	
	
Can the user tell the identity of other people working on the collaborative task?

	Actions: What?
	What are other participants doing?

	
	
Can the user tell what tasks the other participants are working on?

	
	
Can the user tell what tools or objects the other participants are using or manipulating?

	
	
Can the user tell what changes the other participants are making to objects in the shared workspace?

	
	
Can the user tell what changes he/she and others are allowed to make?

	
	
Can the user tell what the relative activity levels of the other participants are?

	
	
Can the user tell whether the other participants are willing to be interrupted?

	Location: Where?
	Where are the other participants working?

	
	
Can the user tell where in the shared workspace the other participants are
working?

	
	
Can the user tell what the other participants can see?

	
	
Can the user tell where the other participants are focused?

	Time: When?
	When do changes made by the other participants take place?

	
	
Can changes made by the other participants be shown to the user in real time?

	
	
Can past elements be replayed?

	
	
Can the user find out when a particular past event happened?

	Motivation/Intention: Why?
	Why are the other participants doing what they are doing?

	
	
Can the user tell what the other participants’ immediate intentions are?

	
	
Can the user tell what the other participants’ goals are?

3.4.1.4

 seq Level4 \r 0 \h * MERGEFORMAT Group Characteristics

Group characteristics are attributes that determine how a group can work together. Groups have different requirements depending on the makeup of the group, the social relations (peer-to-peer versus boss-employee), formality, the location of the group members, and the time requirements for collaborative sessions. Examples of these characteristics are included in Table 3. In addition to considering the current dimensions of the group, system requirements should also take into account anticipated changes in these dimensions. For example, all members of a task force might start by being collocated but with the knowledge that, in two weeks, half of the group will be remotely located. Group characteristics affect how all of the different types of tasks are performed.

Table 3. Example Group Characteristics

	Category
	Characteristics
	Potential Values

	Group type
	Number of members
	Number

	
	Group location
	Same for all, various locations

	
	Homogeneity
	Gender diversity, peers only or multiple levels of corporate hierarchy, differences in computer experience, cultural diversity

	
	Stage of development
	Newly formed to well-established group

	
	Motivation of group members
	Very low to very high

	Group’s time constraints
	Duration of collaboration sessions
	Number of hours to number of days

	
	Synchronicity of collaboration sessions
	Synchronous or asynchronous

	
	Length of time over which collaboration will take place
	Number of days to indefinite

	Group’s
	Hardware, software requirements
	Platforms, software needed

	computer requirements
	Training expectations
	Walk-up-and-use to formal classes

	
	Computer expertise of group members
	Novice to expert

3.4.1.5

 seq Level4 \r 0 \h * MERGEFORMAT Requirements Level Measures

The primary measures taken at the requirements level are time for task completion, similarity of participants’ perceptions of the outcome, quality of work produced, and satisfaction of users. The secondary measures include agreement of participants about what will be done next, types of conflicts occurring in turn-taking, and number of awareness breakdowns.

3.4.2

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Capability Level

Collaborative capabilities provide a means of matching tasks with services. This matching process must take into account how well the service supports the capabilities and whether this level of support is acceptable given the high level requirements.

The capability level can be divided into those capabilities that support the different requirement drivers (i.e., work, transition, and social protocol). By explicitly understanding which types of tasks a system supports well, potential users can better weight an evaluation to choose the system that best supports their highest priority types of tasks. Examples of the capabilities that support work and transition tasks can be seen in Table 4.

Table 4. Examples of Capabilities that Support Work and Transition Tasks

	Task
	Example Capabilities/Subcapabilities

	Work
	– Shared workspace

– Full access to all objects

– Restricted access

– Anonymous contributions

– Communication

– Anonymous communication

– Side chats and private communication

– Message passing

– Message leaving

– N way communication

– 1 way communication

– Gesturing, pointing, agreeing, disagreeing

– Feedback channel

– Private communication

– Secure communication

– Private workspace

– Support for object types

– Object visualization

– Object manipulation

– Object management

	Transition
	– Collaboration coordination capabilities

– Summarization capabilities

– Playback facility

– Distribution of objects

– Translation of objects between modalities

– Collaboration planning capabilities

– Agenda support

– Calendar support

– Meeting notification

– Voting

– Locator capabilities

– Locate possible collaborators

– Locate group members

– Locate objects

At the capability level, measures can be taken of the various times spent using objects, broken down by modality of use. Times spent using capabilities for transition tasks and social protocols can be noted as well. Collisions in turn taking and questions about awareness can also be measured.

Part of the evaluation process could involve understanding whether competing systems have the same set of capabilities. Table 5 shows a part of an example checklist that includes a number of capabilities with corresponding boxes that are filled in if the capability is provided, or provided partially, by the subject system, or left blank if the system does not support that capability. Five sample systems are identified as “A” through “E.”

Table 5. Sample Checklist of Collaborative Capabilities

[image: image2.wmf]A

B

C

D

E

Workspace

Access to objects

Application Synchronization /

Sharing

Web browsing

Private workspace

Object manipulation

Creating / modifying / etc

Visualization of 2D images and

text objects

Collaborative creation/editing of

graphical data

Object management

Coordinating/controlling,

protecting/locking

Document access control

Object storing

Import/export

Collaboration Coordination Capabilities

Summarization (smart feature)

Session recording (data capture)

Collaboration Planning Capabilities

Agenda

Calendar

Public or anonymous voting

Locator Capabilities

Locate possible collaborators

Locate group members

Awareness indicators

List active session participants

Video: gesturing

Meeting conduct

Floor control

Role management

Communication

N-way synchronous comm

System

Category

Capability

Capabilities for Social Protocols

Capabilities for Transition Tasks

Capabilities for Work Tasks

3.4.3

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Service Level

The service level provides mechanisms to meet the user’s need for specific capabilities. It includes different types of services that can be used in developing CSCW systems. In the future, this level could be expanded to include pointers to threshold values a given service should meet to provide adequate support for various capabilities. A list of basic characteristics of the various services could also be included at this level.

Examples of services include:

–
Email

–
Chat facility

–
Internet connections

–
Telephone conversation

–
Multicast audio

–
Multicast video

–
Half duplex audio

–
Full duplex audio

–
Whiteboard

–
Shared workspace

–
Shared applications

–
Encryption

–
Recording

–
History mechanism

–
Lists of objects, participants, possible collaborators

–
Version control

–
Simultaneous sessions

–
Collaborative space management

–
Collaborative space navigation

–
Object repository

–
Object control

–
Import/export facilities

Service level evaluations are of two types: comparisons to thresholds and feature sets and comparisons between services (of the same type or of different types). Service level measures such as quality of imported image (readability, discernability, contrast), audio quality (clarity, echo), and video quality (contrast, color tone) could also be used to compare services.

A template/checklist can be provided to facilitate the research in determining whether services are provided. An example of a partial checklist can be seen in Table 6 below. This table lists the services provided by sample systems, denoted system A through E. Each cell in the table is filled in if the service is present and left white if it is absent.

3.4.4

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Technology Level

The technology level refers to the specific implementation of a system.

User interface components and the elements needed to integrate technology building blocks into a unified CSCW system exist at this level. Usability evaluations are best conducted at the technology level within the context of group work tasks, although simple evaluations of performance and quality can be made outside of a group work context. Performance and quality measures can be compared to threshold measures at the service level to ensure that the implementation being evaluated meets or exceeds those values.

Table 6. Sample Checklist of Collaborative Services

[image: image3.wmf]A

B

C

D

E

Workspace

Internet access

Workspace integration

Object Manipulatio/Mgmt

Whiteboard

Shared text editor

Object sharing

Object repository

Import/Export

Version control

Planning / Coordinating

Simultaneous sessions

Recording

Replay

Communication

Paging

Email

Audio Conferencing

Text chat facility

Encryption

Multicast video

Awareness

List of participants

List of objects

Attention Getters

System

Category

Service

3.5

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Collaborative Tasks

The types of tasks a group needs to accomplish can determine many of their specific work and transition task requirements. A listing of collaborative task types may be used as a starting point in analyzing a group's requirements in a top-down evaluation. In a bottom-up evaluation, systems can be analyzed to determine which tasks and requirements they can support.

Our task descriptions are based mainly upon tasks described in McGrath’s group research (1984). The tasks described by McGrath should be thought of as a continuum. They are numbered from 1 to 8, with successive tasks related to each other. The tasks are summarized in Table 7.

Note that a portion of McGrath task 6 is not included in Table 7 because it is not applicable to collaborative work. Slight differences in other tasks are also noted in Table 7. In addition, we have added a task type (task 9) for “information dissemination.” Information dissemination refers to activities such as participating in classes or sharing news of corporate restructuring. Such tasks are not covered by the other McGrath tasks, and so the addition and definition of a ninth task type was necessary to form a comprehensive collection of current work practices. We refer to these nine types of tasks as “work tasks” throughout the rest of this paper. Collectively, the work task descriptions and examples should enable users of the methodology to identify the task types that reflect the tasks performed by a particular group that is in need of collaborative computing support.

In Table 7, each task type has suggested measures of task outcome. In addition, for many task types, research has uncovered problems that may occur with groups performing this type of task. In some instances, computer-mediated processes or other group processes may be able to alleviate these problems. We have listed known problems so that comparison measures can be made to see if there is any effect. Where there is research about computer-mediated work or group interactions and the effect on the task outcome, we have included it under the heading "known research." An example of each task is also provided to help in understanding how the generic task maps to a real world task. Under "suggested capabilities" are those capabilities that the research suggests may be valuable in carrying out that particular generic task.

3.6

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Summary of Collaborative Framework

The collaborative framework is intended to benefit both researchers and developers of collaborative systems as well as purchasers and users of collaborative systems. The framework is useful in identifying scenarios for a group to use in evaluating a system or in comparing several systems. Over time, we expect that guidelines will appear at the various levels of the framework. These guidelines will suggest capabilities for work tasks and transition tasks; services best suited to certain capabilities; and the appropriate usability, performance, and features thresholds needed for specific services.

	Table 7. McGrath Tasks With Variations (“Work Tasks”)

	Type
	Definition
	Specific measures
	Known Research
	Suggested Capabilities
	Example

	1
	Planning. Group members are given a goal and asked to develop a written plan for carrying out the steps needed to reach that goal. The written plan should include alternative paths or actions.
	– Amount of time per participant

– Amount of calendar time

– Practicality of plan (quality of task outcome)

	– Social relations hinder task efforts

– There can be a strong effect on the group due to social influence and conformity

– Groups often have trouble seeing alternatives; tend to focus on only a few alternatives

– Participation can be very unequal; this increases as group size grows

– Groups tend to avoid conflict and spend more time on non-controversial issues. Controversial issues tend to become personalized

	– Calendar support

– Text object creation, editing, displaying, arranging, storing

	The group has to produce an advertising campaign for a new account by the end of the month. They have a meeting to plan the different tasks that each member will carry out, complete with time lines for doing so and different coordination points.

	2
	Brainstorming and group creativity. Members of a group are given a particular topic area and asked to brainstorm on ideas.

	– Number of ideas

– Originality of ideas

	– Creativity of individuals is stifled by social influence of group

– Individuals are able to take advantage of creativity-enhancing forces in group - social support, cross stimulation

	– Anonymous communication

– Synchronous communication

– N way communication

– Shared workspace

	The group has a goal to raise $200,000 to build a new community center. They generate ideas for funding raising events, people to ask for contributions and possibilities for loans or selling "shares" to the community members to raise this money.

	3
	Intellective. The group is asked to solve a problem for which there is a recognized solution. The group is asked to determine a concept, given instances of the concept.

	– Number of trials to solution

– Solution (quality of task outcome)

– Errors

– Inferred strategies

	– Written media is slower to arrive at a solution than voice media is. But voice media uses more messages than written.

– Audio only does not differ significantly from face to face (and hence, probably video)

– Interacting groups are almost always more accurate than their average member

– Groups seldom do as well as their best members

	– Shared workspace

– Gesturing, pointing, agreeing, disagreeing

– N way communication

– Private group communications

	A logical reasoning problem such as the cannibal and missionary problem.

Three cannibals and three missionaries are on a riverbank. They need to cross the river. There is a rowboat that can hold only two people. Only missionaries know how to row. At no time can there be more cannibals than missionaries on either side of the river. What is the minimum number of trips that can be made to transport all six to the other side?

	4
	Decision-making. Group members are asked to develop consensus on issues that do not have correct answers.

	How far and in what direction (if any), the group as a group and the individuals in the group shift. (Attitudes are measured before and after group discussion.)

	–
Groups may not use their collective knowledge fully or efficiently

 –
Some members may have more influence than others; the influence may not be based on competency

 –
May be pressure towards quick, rather than good, decisions

 –
Diversity of views and values may make reconciliation difficult
	– Shared workspace

– N way communication

– Side chats

	The group must decide which of three job candidates should be hired. All candidates have the same degree and specialty type, but different work experiences. The group must decide which candidate to hire.

	5
	Cognitive conflict tasks. Members of the group hold different viewpoints. The group is asked to make a series of decisions from available information that is imperfectly correlated with criterion.

	– Agreement among members

– Interpersonal trust

– Changes in member's views

	– Verbal interactions can lead to clarification of why group members are consistently using different policies. But if policies are used inconsistently, this leads to a distrust of and a reduction in understanding of the other.

– Group members may change policy to increase accuracy.

	– Shared workspace

– N way communication

	The group is hiring a designer. Three candidates are at the top of the list. Each has a different degree type. The group is divided about the type of experience best suited to this position. The group is interdisciplinary and each tends to favor hiring the candidate most closely aligned with their discipline.

	6
	Mixed motive tasks. A range of tasks, differen-tiated by the degree to which a group member's outcome is affected by a combination of his own actions and the group's outcome.*

	Not applicable.
	Not applicable.

*Note that McGrath also includes dilemma tasks in this category. However, since the dilemma decisions are made independently, no collaboration occurs. Therefore, we have not included dilemma tasks in our framework.
	Not applicable.
	Not applicable.

	6A
	Negotiation task. The group is divided into x subgroups with a negotiator elected for subgroup. The different subgroups disagree; tradeoffs have to be made in multiple dimensions. It is not necessarily a zero-sum problem
	– Quality of solution as evaluated by each subgroup

– Time to solution

– Attainment of solution (task completion)

– Evaluations of negotiators by group

– Interpersonal relations between group members

	– Negotiators are more competitive when any of these conditions hold:

– They think constituents distrust them

– They were elected

– They are being observed

– They have a prior commitment

 – Their constituents belong to a highly cohesive group

–Negotiators who do not belong to the group feel freer in the negotiation process but are less supported by the group.

	– N way communication

– Group private communication

– Shared workspace

– Private workspace

	Company A and Company B are negotiating the sale of supplies from A to B. Company A wants to sell more of the supplies at a lower price to company B, but this means that company B, while saving money on the sale, will have to arrange financing with company A.

	6B
	Bargaining task. A conflict of interest must be resolved between two individuals, but in this case whatever one individual gains results in a loss for the other individual. The trade-off is made on a single dimension: what one party gains, the other party loses.

	– Frequency of no-solution trials

– Absolute and relative gains of the two individuals over series of trials

– Responses to different strategies

– Opponents’ ratings of each other's bargaining strategies

	See under task 6A.
	– N way communication

– Group private communication

– Shared workspace

– Private workspace

– Text object manipulation

	There has been a price set by Company A for a machine that company B wishes to purchase. Company B does not feel that the price is low enough. Company A is trying to maximize profit as the company is having cash flow problems, but loosing the sale will be a problem also.

	6C
	Winning coalition tasks. Subsets of members make agreements. The subset that wins then allocates the resources among the group members. The two research questions are the formation of the coalition, and the allocation of the resources.

	– Which coalitions form

– The division of outcomes

– Any shift over time

	– Strong tendency towards the formation of coalitions of minimum winning resources

– For groups larger than 3, there is a tendency towards coalitions with minimum numbers of players

– Females play the coalition game accommodatingly; males play exploitatively
	– N way communication

– Side chats

– Shared workspace

– Private workspace

– Gesturing, pointing, agreeing, disagreeing

– Support for computational object

– 2D object manipulation

	A variant of Parcheesi is played in which a player's piece is given a weight. Moves are based on product of the weight of the piece and the roll of a pair of dice. Players can play alone or can combine with one other player by adding their moves together. They must then agree on how to divide the payoff assuming they win.

	7
	Competitive performances. Groups are competing against each other with no resolution of conflict expected. The goal of each group is to win over the other group. Subgroups are paired against each other an equal number of times, under an equal pattern of situations. In the original McGrath work, these performances are physical. Here, these types of tasks may be physical or nonphysical.

	– Team performance (quality of task outcome)

– Individual performance (quality of task outcome)

– The overall winner

	– Inter-group competition increases within-group cohesion.

– Success in a competitive task also increases within-group cohesion.

– Groups do not always distinguish between good group performance and winning.

	– N way communication

– Side chats

– Private communication

– Secure communication

– Private (to group) workspace

	A focal group competes with an opposing team that has a series of preplanned, semi-standardized patterns. The responses to the focal group's moves are based on pre-planned strategies. A reconnaissance patrol or defense of a position is an example of such an activity.

	8
	Non-competitive contests. Groups perform some sort of complex group task. The plan for the task has already been decided upon. In this type of task, the group is merely executing the plan.

	– Cost and efficiency of performance - speed and errors

– Evidence of performance level changes over time (quality of task outcome but can only be measured for repetitions of task)

– Member satis-faction with the task, the group, their own roles

	– Increased interpersonal interaction does not always lead to higher productivity

– Groups influence their members toward conformity with the group's standards - this may increase or decrease productivity

	– Shared workspace

– N way communication

	A survival task or rescue task in which a group has to perform to achieve a goal: getting back to base or saving individuals.

	9
	Non-McGrath. Dissemination of information. The task is to distribute information among members of the group. Group members may share information with each other, or a superior may disseminate the information to the group.

	– Shared understanding of information

– Time for distribution

– Audience reached

	
	– 1 way communication

– Feedback channel

– Object displaying

– Summarization capabilities

	A corporate officer gives a briefing to a division about the new sales strategy.

A professor gives a lecture to a class.

Section 4

 SEQ Level1 \r 0 \h

 SEQ Level2 \r 0 \h

 SEQ Level3 \r 0 \h

 SEQ Level4 \r 0 \h

 SEQ figure \r 0 \h

 SEQ table \r 0 \h
Scenarios for Evaluation of Collaboration Tools

4.1

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Introduction

Having defined a framework for describing collaborative systems and generic task types, we can re-examine what a scenario is, how it can be constructed or chosen from a library, and how we can use it for evaluating collaborative systems.

Scripted and unscripted scenarios each serve different, but valuable purposes.

An unscripted scenario allows the most natural interaction, because it does not constrain the user’s actions. It can also allow the experimenters to determine whether the best ways of doing things are apparent or intuitive to the users.

A scripted scenario allows a scenario to be repeated much more exactly. Thus it allows much more accurate comparisons of measurements across systems or even across multiple implementations of the same system.

A scripted scenario at the capability level gives the detailed instructions in terms of the capabilities that the script uses. This script does not require the use of any particular services, so it can be run on any system that provides some means of instantiating the required capabilities. Scripts defined at the capability level can often be used across platforms that provide radically different sets of services in support of the same basic capabilities.

A scripted scenario at the service level specifies the steps in the scenario in terms of the services to be used, without committing itself to a particular technological implementation of the service. It may, for example, state that a particular discussion is to take place via video conferencing, without specifying exactly how that will be achieved in any particular system. A service-level script might be useful in cases where one wants to compare different implementations of the same basic services.

A scripted scenario at the technology-level is the most detailed. It tells the users what buttons to press and exactly how to carry out the scenario on a given set of technologies. It provides a detailed, standardized, repeatable sequence of actions. This script can be carried out by even the most inexperienced users, including those who lack the domain knowledge required to run an unscripted version of the scenario, and those lacking training on the technology being assessed. It could also serve as training material for new users of the technology. Such a script could even be carried out by participatons, removing the reproducibility problems the human in the loop necessarily introduces. It can be used for some types of user interface analysis, such as formal dialog modeling techniques (Card, Moran and Newell 1983), but of course it cannot be used to assess issues such as intuitiveness, since the users are guided through every step of the interaction.

Since it can be useful to have both scripted and unscripted scenarios at various levels for the same collaborative activity, it is instructive to consider how one might generate scripts at various levels of detail for a particular collaborative activity starting from a scenario for that activity. It would be possible to start with the script and have real people (with appropriate expertise, if necessary) run through it on a particular set of technologies, logging the interactions. One could then take the logs, edit out any undesirable actions (such as wrong paths or puzzling over the interface) and create a detailed technology-level script from it. By generalizing the script first to generic services and then to the capabilities supported by those services, the scenario developer could then generate higher-level scripts to allow scripted evaluation across a greater variety of collaborative systems.

4.2

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Constructing Scenarios

As an example of a means of constructing scenarios, consider an evaluation at the requirements level to compare several systems. The methodology aids in achieving repeatability across trials using the different systems.

Scenarios are constructed by putting together tasks based on the collaborative task types described in section 3. A group selects the various McGrath task types for which its members will use the collaborative system. They also consider the social protocols and group characteristics appropriate for the group. The collaborative task types are generic and thus, to construct scenarios, each group will choose specific tasks that are instantiations of generic task types.

For example, a group might need to plan an activity and, in doing so, solve a problem. These activities can be represented by McGrath task type 1 (planning) and task type 9 (information dissemination). Here is a scenario that instantiates these two task types:

A frantic call comes in. Colleague #1 is late for an important meeting across town. You know about a few obstacles such as road construction blockages between Colleague #1 and her meeting location, but Colleague #2 has the latest report from the local news radio. Together, you and Colleague #2 must devise the quickest route to the meeting. You must agree on the route and inform Colleague #1.

Experimenters may find it useful to code their scenarios using consistent terminology so that they can be more quickly compared to each other. For example, in the following description Ti refers to a type of transition task i. Task Type # refers to a work task type of that number. Pj refers to a collection j of attributes for a social protocol. Using the collaborative framework to describe this scenario, we would say:

The group starts with a transition task to begin (Tstart). They perform a planning task (Task Type 1) using an appropriate social protocol (Ppeer). They summarize the decision in the transition task (Tsummary) and move to the information dissemination task (Task Type 9), followed by the ending transition task (Tend).

4.3

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Choosing Scenarios

Ideally, a set of scenarios developed over time could be shared among experimenters so that scenarios need not always be developed from scratch. The Evaluation Working Group (EWG) has created some sample unscripted and scripted scenarios that may be used for evaluation. They may be found at http://www.antd.nist.gov/~ icv-ewg/pages/scenarios.html. We encourage others to contribute scenarios or scripts that they have written to help develop this repository. A scenario template to complete may be found at http://zing.ncsl.nist.gov/~cugini/icv/domain-template.html.

Each example clearly sets out the types of tasks according to the extended work task (McGrath-like) categorization in Section 3; and the transitions, social protocols and group transitions that it exercises (or aims to exercise). It also lists the capabilities and/or services required or recommended to complete the scenario. This information will be helpful for users in choosing appropriate scenarios to use for their evaluation, as discussed below.

4.4

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Using Scenarios for Evaluation

The utility of any given scenario is obviously much greater if it is chosen to have the property defined as “salience” (Potts 1995). Potts characterizes salient scenarios as those that are pertinent to collaboration goals and model expected obstacles to task completion. The evaluator should begin by identifying the goals addressed by the system under evaluation and the obstacles to meeting those goals. Explicitly identifying goals and obstacles can help the evaluator select the appropriate scenario.

4.4.1

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Using Scenarios to Iteratively Evaluate a Single System

One major goal of the Evaluation Working Group is to support system developers in their need to do frequent evaluations of the system to validate the theoretical improvements offered by new versions. This is a bottom-up evaluation, beginning with the technology (the system being evaluated) and moving up to the requirements that the system supports.

Developers should attempt to choose one or more scripted or unscripted scenarios that exercise the types of capabilities and services their system provides and/or involves the types of tasks, transitions and social protocols that they hope to support.

Developers who devise their own scripted or unscripted scenarios (see section 4.3) to exercise other sets of capabilities are encouraged to contribute them to the scenario repository that the EWG has started.

4.4.2

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Using Scenarios to Evaluate a System’s Appropriateness for Your Requirements

For potential users looking to select a collaborative system to suit their needs, the scenarios can serve a different purpose. Instead of choosing scenarios based upon a particular set of capabilities or services, they can instead choose scenarios that highlight the types of tasks that they need to perform.

4.4.3

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Using Scenarios to Compare Systems

If multiple systems are to be compared using scenarios, several scenarios should be chosen for the evaluation. A complete comparison of the systems should compare the performance of the systems on the different scenarios. The set of scenarios in which each system performs well or poorly highlights the requirements that each system does or does not meet. When it is not possible to say which system is best overall, it should be possible to determine which system is best for a particular set of requirements, or which provides the greatest breadth of requirement support even if it is not the best system for any particular set of requirements. The results must be interpreted in terms of the goals of the experiment.

Section 5

 SEQ Level1 \r 0 \h

 SEQ Level2 \r 0 \h

 SEQ Level3 \r 0 \h

 SEQ Level4 \r 0 \h

 SEQ figure \r 0 \h

 SEQ table \r 0 \h
Metrics and Measures

5.1

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Introduction

In the preceding sections, we presented a framework for classifying collaborative systems and an approach to evaluation that employs scenarios. Here we enumerate the metrics and measures introduced in Section 3 and discuss techniques for gathering the metrics.

Metrics are indicators of system, user, and group performance that can be observed, singly or collectively, while executing scenarios. Metrics – such as time, length of turn, and other countable events – are directly measurable and can often be collected automatically.

Measures can be taken at each of the four levels of the collaborative framework. Measures are derived from interpretations of one or more metrics. For example, task completion time (a requirement-level measure) is based on start and end time metrics. For asynchronous tasks, it may be useful to distinguish time on task from elapsed time. A measure can also be a combination of interpreted metrics and other measures. A complicated measure, like efficiency, is partially derived from the interpretation of metrics such as time, as well as user ratings and tool usage. In addition, measures of system breakdown (taken at the service or technology levels) contribute to efficiency.

A simple way to distinguish between metrics and measures is by the following statement: a metric is an observable value, while a measure associates meaning to that value by applying human judgment.

As another example of the metric and measure relationship, consider the turn overlap metric. Overlap of speaker A by speaker B can be counted if the start time of speaker B is greater than the start time of speaker A but less than the end time of speaker A. Further interpretation is required to determine if a particular occurrence of turn overlap is an attempt to gain the floor (interruption in communication) or a back-channel response indicating attentiveness (support, grounding). This might be an interesting measure at the capability level, to understand the ease and effectiveness of multi-person conversational interaction.

The metrics and measures described here are relevant to laboratory experiments. The goal of the Evaluation Working Group is to define inexpensive evaluation technology that can be reproduced in a laboratory. Hence, the measures do not address organizational impact and other measures that require fielding production-quality systems.

Experiments involving human subjects, or sets of subjects, are expensive and time consuming, both in terms of collection and analysis. In many cases, the measures must be developed and validated before they can be applied with confidence. Despite these difficulties, we describe options for evaluating collaborative systems at all four levels of the framework discussed in Section 3.

We begin with an overview of the methods, metrics and measures, and then present the measures found at each level of the framework. Metrics are introduced first because they are components of measures, including methods used to collect metrics. Next we discuss measures, before turning to automated logging techniques that may aid data collection and analysis.

Figure 2 illustrates the relationship of data collection methods, metrics, measures, and human judgment. The diagram also shows how the measures of the four levels of the collaborative framework are nested, emphasizing the mappings between these levels. As illustrated at the bottom of the diagram, we use data collection methods, such as a logging tool or video taping, to gather metrics on a system (the next level up). Metrics provide the raw input necessary for refining measures for requirements, capabilities, services, and technologies. Human judgements, from both experts and users are associated with all four levels.

[image: image4.wmf]Requirements Measures

Capabilities Measures

 Human

 Judgement

Service Measures

Technology Measures

Metrics

Data Collection Methods

Figure 2. Overview of the Levels of Measures

Metrics based on human judgment also support measures for making judgments about the system. Questions to both experts and users of the system can provide valuable data points in the evaluation of a system.

5.2

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Metrics

The following table of metrics comprises the observable data elements that were identified as useful indicators of system and group performance. A single metric is just a number (e.g., number of turns) or a set of numbers (e.g., start time and end time). Metrics can also be used in combinations (e.g., the repair activities metric is partially built up from the number of undos and the number of cancels and is the deviation from some established ‘right path’). For each metric, we present in Table 8 definitions and examples of ways to capture the metric. Where applicable, the metrics are enumerated or are broken down into finer granularity.

We attempt to provide some guidelines for gathering each metric. It is important for the evaluator to record how each metric was observed so that comparisons can be made with data collected from multiple experiments. Methods used to gather each metric are listed in Section 5.2.1.

	Table 8. Metrics

	Metric
	Definition
	Examples

	Countables
	Any items that can be counted, once a clear definition has been developed. The difficulty with countables is in ensuring that the definitions are consistent and that items are counted in the same manner.

	•
Turns (spoken utterances, e-mail messages, typed lines, etc.)

•
Moves (a subtype of turn, e.g., turns taken in a game)

•
Steps (number of high-level steps to produce result; number of mouse clicks or button presses towards accomplishing a task)

•
Trials (number of aborted attempts and successful attempts to reach goal)

•
Ideas generated

•
Responses (replies to e-mail message; responses to a question)

•
Cancel button presses (Note that there could be different reasons for this: 1) the user made a mistake, or 2) the user changed his/her mind)

	Length of turn
	The length or size of any type of turn. A turn is a single unit of communication or activity.

	•
Length of spoken utterance = end time (of utterance) - start time

•
Length of e-mail message = number of lines

- or - = number of sentences

- or - = number of words

- or - = size in bytes

•
Length of turn in chat session = number of sentences

- or - = number of words

•
Length of move (subtype of turn) = time at end of move –

time at start of move

	Task completion
	Whether or not a task is completed.
	Yes or no (completion or non-completion). In some cases, the degree of completion can be measured.

	Time
	Time, as a metric, supports a number of measures. Base metrics for start and end time can be interpreted to support various measures. Time can be measured with respect to an individual, as a sum of all individual times, and/or as the longest individual time in the group.

	•
Overall task execution time: the interval from task beginning to task end. This is the total time it takes the collective group to complete execution of the task.

•
Task time: the time spent on the actual task. This does not include transition time or time spent doing non-task-related activities.

•
Transition time: the amount of time it takes the group to transition from one task to another. This includes set up time.

•
Other time: determined by the following formula: other time = overall time - (task time + transition time)

•
Repair activities time: the time spent going down a wrong path in addition to the time spent repairing those actions. (See the definition of repair activities below. In asynchronous tasks, repair activities time = overall time – task time – transition time – idle time.

	Preparation cost metrics
	These metrics include the monetary amount of a system and the learning time for individual users.
	•
Dollar amount.

•
Learning time.

•
Learning cost = labor cost * time.

	Expert judgments
	Questions posed to experts
	Yes/no/to what degree/quality questions relating to:

•
Scalability

•
Security

•
Interoperability

•
Collaboration management measures

•
Communication

•
Collaborative object support measures

•
Transition measure

usability

product quality

task outcome

the set of tools used to accomplish the task (the efficiency of the tools used)

	User ratings
	Questions posed to users
	•
Task outcome

–
Product quality

•
User satisfaction

–
Satisfaction with the group process

–
Satisfaction with task outcome or final solution

–
Satisfaction with an individual's participation

–
Satisfaction with the group participation

•
Participation of:

–
An individual

–
The group

•
Efficiency

–
Efficiency of the system

•
Consensus on:

–
The solution

–
The task outcome

•
Awareness of:

–
Other participants

–
Objects

–
Actions

•
Communication

–
Whether communication was possible

–
The goodness of the communication

–
Ability to get floor control

–
Ability to ask a question / make a response

•
Grounding

–
Establishing common understanding with other participants

–
Understanding what other participants were talking about

•
Transition

–
Smoothness of the transition

•
Usability

–
Standard user interface evaluation and usability questions

	Tool usage
	The frequency and distribution of tools used to accomplish a particular task. Also the way in which tools are used to accomplish a particular task.
	•
Can be measured as the deviation from a pre-determined “correct” tool usage established by experts. Experts can rate the use of sets of tools for each subtask, and tool usage can be measured as the deviation from those ratings.

	Turn overlap
	The overlap in communication by two or more people.
	•
Occurs when the start time of a turn happens before the end time of a previous turn. Turn overlaps can be counted and categorized into interruptions, backchannel communications, etc.

	Repair activities
	Include all errors, following down a wrong path, and all actions performed to correct those errors. Repair activities also include not knowing what to do and seeking help. In order to have this metric, there must be an established ‘right path’, or a list of possible ‘right paths’. Experts determine the ‘right paths’.
	• The repair activities metric is made up of the number of undos and the number of cancels, as well as repetitive or useless keystrokes.

	Conversa-tional constructs
	A general category of metrics that includes semantic and grammatical content of communication. Topic segmentation and labeling is the ability to segment dialog into multiple, distinct topics with each segment labeled as to its topic. A reference is the use of a grammatical construction (e.g., a definite noun phrase or a pronoun) to refer to a preceding word or group of words.
	Given topic segmentation, we can measure:

•
Topic mention – the number of times a topic is mentioned

•
Distance of topic from a given turn

•
Number of supportive responses (backchannelling, explicit agreement, etc.)

References can be counted by their occurrence, type, and distribution in a transcript. The use of pronouns can indicate group inclusion (you, we) or exclusion (I).

5.2.1

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Data Collection Methods

The following is a list of methods, or data-collection instruments, used for gathering the metrics described above:

· Logs

· Direct observation

· Questionnaires/interviews/rating scales (open-ended or closed/fixed alternatives)

· Tape recorder/transcription

· Video recorder/annotation

Many of the metrics can be gathered by a variety of tools or methods. For example, countables can be obtained by studying logs, observations, audio transcripts, and video recordings. (Automated methods of collecting data are discussed in Section 5.4.) Each method offers potential opportunities not available by other means but also has inherent limitations. For this reason, we suggest using multiple methods to obtain each metric. The possibilities are enumerated in Table 9 below.

	Table 9. Table of Metrics vs. Data Collection Methods

	Metrics
	Logs
	
Observations
	Question-naires
	Audio
	Video

	Countables
	x
	x
	
	x
	x

	Expert judgments
	
	x
	x
	
	x

	Length of turns
	x
	x
	
	x
	x

	Turn overlap
	x
	
	
	x
	

	Resource costs
	x
	x
	x
	x
	x

	Task completion
	x
	x
	
	
	

	Time
	x
	x
	
	x
	x

	Tool usage
	x
	x
	x
	
	x

	User ratings
	
	
	x
	
	

	Conversational constructs
	x
	x
	
	x
	x

	Repair activities
	x
	x
	x
	x
	x

5.3

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Measures

The framework described in Section 3 of this document divides the collaborative system design space into four levels: requirement, capability, service, and technology. Measures are associated with each level. For example, participation is a requirement level measure correlated with various metrics: the total number of turns per participant, the total number of turns per group, and user ratings. By contrast, usability is a technology level measure.

For each measure, we present:

· A definition

· The “building blocks”: metrics and other measures

· Associated task types

The “building blocks” of a measure are metrics and other measures. A building block can be a combination of metrics or arithmetic formulas involving metrics. Note that many of the components of each measure are examples; exact components may vary depending upon the specific situation. Where available, we have included references to supporting research. For some measures, we have also included metrics and measures that might show some indirect relevance.

In general, all measures can be applied to all tasks. However, some measures may have little or no relevance for a particular instantiation of a task type. For example, measuring participation is usually not important to a dissemination of information task (Type 9), but is often very important in a brainstorming and creativity task (Type 2). With each measure, we include a list of what we believe to be the applicable task types that the measure helps to evaluate. The task types are enumerated and explained in Section 3 of this document.

The requirement level measures are summarized in Table 10 and include definitions and components. Capability level measures evaluate general capabilities of collaborative systems (see Section 3), and are summarized in Table 11. Service level measures evaluate the services provided by a collaborative system; they are summarized in Table 12. Finally, technology level measures aid in evaluating the implementation of a collaborative system. Example technology level measures can be found in Table 13.

	Table 10. Example Requirement Level Measures

	Requirement
	Definition
	Metric/Measure Components

	Task outcome
	Measure of the state of a particular task. A set of artifacts is produced during task execution (e.g., documents, ideas, solutions, defined processes).
	- Countables (number of generated artifacts);

- task completion (yes/no)

- expert judgments of product quality

- user ratings of product quality

	Cost
	Measure of time invested in the system and the resources consumed in executing an activity
	- preparation cost measures (monetary amount and learning time)

- countables (number of turns)

- length of turns

- execution time

	User satisfaction
	Subjective measure of satisfaction with respect to the four aspects of group work.
	- user ratings; e.g., satisfaction with: group process, task outcome, individual’s participation, group participation

	Scalability
	Measure of a system’s accommodation for larger or smaller group size.
	- time to complete particular tasks versus number of users

- resources needed to complete particular task versus number of users

- expert judgments - yes/no, to what degree

	Security
	Measure of the protection of information and resources
	- expert judgments (yes/no to a list of features, to what degree)

	Interoperability
	Measure of how well system components work together, sharing functionality and resources
	- expert judgments

- tool usage

	Participation
	Measure of an individual’s involvement in a group activity
	- countables (e.g., number of sentences, number of floor turns)

- user ratings

	Efficiency
	Measure of group and system effectiveness and productivity
	- percent efficiency = (task time - repair activities time) / execution time

- user ratings

- tool usage

- breakdown

	Consensus
	Measure of general agreement or group unity in outcome
	- user ratings

- grounding

	Table 11. Example Capability Level Measures

	Capability
	Definition
	Metric/Measure Components

	Awareness
	Degree of “having ... realization, perception, or knowledge” (Webster) of surroundings and events.
	- user ratings

- conversational constructs

	Collaboration management
	Measures assess support for coordinating collaboration; e.g., floor control, agenda support, document access control, etc.
	- expert judgments

	Communi-cation (human to human)
	Measure of the exchange of information in any of the following forms: verbal (spoken or written), visual, physical
	- countables (number of turns per participant)

- turn overlap (simple overlap and interruptions)

- expert judgments

- user ratings (goodness of communication, getting floor control, getting other participants’ attention, ability to interrupt)

	Grounding
	Measure of how well common understanding is established.
	- user ratings (e.g., reaching common understanding with other participants)

- countables (number of turns, length of turns)

- turn overlap

- conversational constructs

	Collaborative object support
	Measure that assesses support for collaborative objects; applied to shared workspace, object manipulation and management, etc.
	- expert judgments

- tool usage (optimal set of tools used?)

	Task focus
	Measures the ability to concentrate on the task at hand.
	- task focus = (overall time - transition time - other time) / overall time

	Transition measures
	Assesses support for transitions; used to evaluate collaboration startup, summarization, playback, archiving, object exporting and importing, distribution of objects, translation between modalities, meeting notification, etc.
	- expert judgments

- user ratings (e.g., flow of transitions between tasks)

- conversational constructs

	Table 12. Example Service Level Measures

	Service
	Definition
	Metric/Measure Components

	Breakdown
	Measures how often the user has to rationalize a problem experienced. Breakdowns can occur in communication, in coordination, in the system components, etc.
	- conversational constructs

- repair activities

	Tool usage
	The degree to which the optimal tools are used for a particular task.
	-
tool usage (which tools were used and how often?)

- expert judgments (were the right tools used?)

	Table 13. Example Technology Level Measures

	Technology
	Definition
	Metric/Measure Components

	Usability
	Evaluates the ease, accessibility, and intuitiveness of the specific graphical user interfaces of the system tools and components. Since usability evaluation is done on specific user interfaces, the usability measures are realized at the technology level although the component measures are also based, in part, on measures taken at different levels of the framework.
	- expert judgments (standard user interface evaluation questions)

- user ratings (standard user interface evaluation questions)

- tool usage (which tools were used and how often? Was the set of optimal tools used?)

- repair activities

- breakdown (defined at the service level)

- awareness (defined at the capability level)

	Specific technology
	
	- tool usage (which tools were used and how often?)

- expert judgments (were the right tools used?)

5.4

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Data Collection Methods: Logging

We often need to collect data about running systems. Since videotaping every session can be difficult, automatic logging can be important in developing easy, repeatable, evaluation scenarios. A multi-modal logging capability can support these efforts.

The MITRE Multi-Modal Logger (MML) is an example of this class of logging tool. MITRE’s MML can be used to log multi-modal data while collaborative systems are running. This data can be fine-grained (individual X or window events, for instance) or coarse-grained (a record of which windows the user interacts with); automatically gathered (via instrumentation) or manually created (via post-hoc annotation). This data can be gathered at the level of the physical or virtual device (for example, window events or the output of an audio device); at the level of the interface (for example, a record of menu selections made and the content of text entry fields); or at the level of the application (a record of actions taken, such as a retrieval of information or a command issued). This information can also be in a variety of modalities, such as text, images, and audio.

Since this information will typically be gathered for multiple users and multiple interactions with the system in question, the notion of a “trial” or “session” is supported. In addition, each trial might require information to be gathered from multiple components simultaneously (for example, when a speech recognizer is used in conjunction with an independent multi-modal system). Therefore, the MML also supports sharing each trial among multiple components, potentially running on different hosts.

MITRE's MML provides an application programming interface (API) for instrumenting existing applications. It also provides a set of tools for reviewing and annotating data collected via instrumentation.

MITRE’s MML offers a solution to the question of what granularity and levels of data may be collected. The instrumenter inserts whatever logger calls are desired into the source code and is thus in complete control of where, in the code, the log entries are generated, how many are generated, and what data types are assigned to them. In general, one can instrument any application for which the source code is available.

MITRE has also developed a log review and annotation tool to distribute with the logger. It allows users to view the data that has been logged for a given session. One may view all the data or select a subset by application, data type and/or timestamp. The data is displayed along a scrollable timeline, with the data sorted into streams by application and data type. This tool may also be used to add post-hoc annotations to the data. There is also a replay facility that allows the reviewer to replay the logged interaction in approximately real time.

The MITRE MML tool suite and documentation are available for downloading at http://www.mitre.org/technology/logger.

Section 6

 SEQ Level1 \r 0 \h

 SEQ Level2 \r 0 \h

 SEQ Level3 \r 0 \h

 SEQ Level4 \r 0 \h

 SEQ figure \r 0 \h

 SEQ table \r 0 \h
Using the Methodology to Design an Experiment

6.1

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Introduction

This section concentrates on the way that the methodology described in this paper influences experimental design. Note that the basics of experimental design will not be covered, but can be found in such references as Pfleeger (1994). Also, we will not give complete descriptions of experiments here because they are not needed to understand how to apply the methodology. (The interested reader can find a description of an experiment designed with the help of the methodology in Damianos et. al. 1999.)

6.2

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT Designing an Experiment

To use the methodology, the experimenters need to decide upon a goal. For example, if the users have a particular set of requirements and the experimenters are charged with finding which system best meets those requirements, the experimenters could follow the steps in Table 14.

	Table 14. Example Steps for a Top-Down Evaluation

	Step
	Title
	Description

	1
	Identify candidate systems.
	Given a set of requirements, either look at a checklist of system capabilities similar to what is included in table 5 of this document or, if not available, create a similar table that includes the capabilities of interest. The result should be a small set of systems that best meet the basic requirements.

	2
	Determine tasks.
	Determine what tasks will need to be performed with the systems and abstract these tasks into the task types described in section 3.

	3
	Select (or create/modify) a scenario.
	Examine a scenario library to see which scenarios support evaluation of the desired task types. If an appropriate scenario cannot be found, create a scenario (see section 4). The scenario should be targeted at the desired evaluation level (e.g., capability, service, and/or technology). For example, if users need to check out and store documents, experimenters might run the scenario at the service level, meaning that several different services for document handling are exercised. Make sure the scenario includes the salient characteristics of their specific tasks; if not, tailor the scenario accordingly.

	4
	Determine measures.
	Choose appropriate measures based on the type of tasks used in the evaluation, the desired evaluation levels, the hypotheses being tested, and observation resources available (e.g., automated loggers).

	5
	Pilot the experiment.
	Run the experiment on a representative, balanced group of users to make sure the appropriate data are collected.

	6
	Run the experiment
	Repeat the scenario for each system or subsystem under consideration.

The approach just described corresponds to a top-down evaluation, beginning with the requirements level and moving to the technology level. Alternately, the experimenters might be given an alpha version of a new system and asked to determine the tasks for which it will be useful. This corresponds to a bottom-up approach, starting with the specific technology and determining the services, capabilities, and requirements it may support. The experimenters could follow the steps outlined below in Table 15.

	Table 15. Example Steps for a Bottom-Up Evaluation

	Step
	Title
	Description

	1
	Compile a list of services.
	Create a list of basic services provided by the system.

	2
	Determine tasks.
	Based on the services the system supports, determine what capabilities this system will provide. Based on this, devise a list of tasks the intended users might perform which would be supported by these services. These tasks should be expressed in terms of the work tasks described earlier.

	3
	Select (or create/tailor) a scenario.
	Examine a scenario library to see which scenarios support evaluation of the desired work task types. If an appropriate scenario cannot be found, create a scenario. Make sure the scenario includes the salient characteristics of their specific tasks; if not, tailor the scenario accordingly.

	4
	Determine measures.
	Using those listed in section 5 as a starting point, choose appropriate measures based on the type of tasks used in the evaluation, the desired evaluation levels (e.g., service, capabilities, and requirements), the hypotheses being tested, and the observation resources available.

	5
	Set criteria.
	Set minimum accepted thresholds for those measures, based on common sense, “typical” standards that are currently generally accepted.

	6
	Pilot the experiment.
	Run the experiment on a representative, balanced group of users to make sure the appropriate data are collected.

	7
	Run the scenario.
	Enact the scenario for the system being evaluated to ensure that the system meets minimum acceptable thresholds for providing those services, capabilities, and/or requirements.

6.3

 seq Level2 \r 0 \h * MERGEFORMAT

 seq Level3 \r 0 \h * MERGEFORMAT

 seq Level4 \r 0 \h * MERGEFORMAT An Example: The Map Navigation Experiment

As an example of how an experiment could be designed using the methodology, consider a task where two people need to collaborate to share route information. The will need to agree on the best driving route to use given specific map information, and communicate the information to another party. This task may be typical of a military mission, where ground-based units must collaborate to share information on how to avoid enemy locations and booby-traps when moving troops.

Suppose that the military planners use MITRE’s CVW to perform these types of route planning tasks. Making audio available in CVW under field conditions is difficult, so military planners might be interested in determining whether audio significantly enhances task performance. This research question can be expressed as the following hypotheses:

1.
People collaboratively plan a route faster when audio communication is available.

2.
People collaboratively plan a better route when audio communication is available.

3.
Participants will be more satisfied with collaborative route planning when audio communication is available.

These hypotheses can be evaluated as part of a top-down evaluation at the service level. Top-down evaluations begin with requirements, which in this case are the need to exchange information and make plans (step 1 in table 14). These requirements correspond to the generic task types of planning and information dissemination (step 2).

The experimenters could search the EWG scenario repository, and if no appropriate scenarios are available, create a scenario (step 3). The scenario should spring from a readily accessible problem domain, in this case, collaborative problem solving. The experimenters could craft the scenario to be readily familiar to a wide range of potential test subjects: route finding using a street map. The scenario would require information sharing and collaborative planning by providing each participant with private information. The scenario could be expressed this way:

A frantic call comes in. Colleague #1 is late for an important meeting across town. You know of a few obstacles such as road construction blockages between Colleague #1 and her meeting location, but Colleague #2 has the latest report from the local news radio. Together, you and Colleague #2 must devise the quickest route to the meeting. You must agree on the route and inform Colleague #1.

Thus, two people must work together to determine the quickest and best route between two locations. Each would have a copy of the same map, but each would also have additional (not shared) information about obstacles in the route (for example, annotations indicating heavy traffic, one-way roads, construction sites, and turning restrictions). A time constraint would be implied; the participants could be told that their colleague was in a hurry to get to a meeting and was awaiting directions. The work would be completed once both participants had agreed on a route. The scenario could be tailored (step 3) to ensure that this exercise reflects a planning task done under time constraints, along with the need to pool information and provide the results to non-collocated colleagues.

Metrics should be based on the hypotheses being tested (step 4). Material presented in Section 5 of this document provides ideas about how and what to measure. The metrics presented in Table 16 could be used.

Table 16. Metrics and Corresponding Hypotheses

	Metric
	Hypothesis tested

	Overall task time
	1

	Expert judgment/quality of route
	2

	User questionnaire
	3

After performing pilot experiments and refining the experimental design, the experiment should be run under both audio and non-audio conditions (step 6).

A similar experiment was performed as an initial validation of this methodology. It is described on the IC&V web site at http://www.antd.nist.gov/~icv-ewg/experiments/mapnav/mapnav.html.

Bibliography

Bass, L. (1996). “Mini-workshop: scenarios for CSCW systems.” In Engineering for

Human-Computer Interaction: proceedings of the IFIP TC2/WG2.7 working conference on engineering for human-computer interaction, Yellowstone Park, USA, August 1995, editors Bass, L. J. and Unger, C. Champman & Hall, 1996, pp. 333-338.

Damianos, L., Hirschman, L., Kozierok, R. and Kurtz, J. (1999). The MITRE Map Navigation Experiment. ACM Computing Surveys, March 1999 issue.

Grudin, J. (1988). Why CSCW Applications Fail: Problems in the Design and Evaluation of Organizational Interfaces, in Proceedings of ACM CSCW'88 Conference on Computer-Supported Cooperative Work, Perspectives on Evaluation, pp. 85-93.

McGrath, J. E. (1984), “Groups: Interaction and Performance,” Englewood Cliffs, N. J.,

Prentice-Hall.

Nielsen, J. and Molich, R. (1990). Heuristic Evaluation of User Interfaces. CHI 1990 Conference on Human Factors in Computing, Association of Computing Machinery.

Open Software Foundation (1993). OSF/Motif Style Guide. Englewood Cliffs, NJ, PTR Prentice-Hall.

Pfleeger, S. (1994). “Experimental Design and Analysis in Software Engineering, Part 1.” ACM SIFSOFT Engineering Notes, vol 19, no. 4. Also parts 2 – 5 in vol. 20, nos. 1, 2, 3, and 5.

Pinsonneault, A. and Kraemer, K. (1993). “The Impact of Technological Support on Groups: An Assessment of the Empirical Research” in Readings in Groupware and Computer Supported Cooperative Work, edited by Baecker, pp. 754-773.

Polson, P. G., C. Lewis, et al. (1992). “Cognitive Walkthroughs: Method for Theory-Based Evaluation of User Interfaces.” International Journal of Man-Machine Studies vol. 36, no. 5.

Nardi, B. A. (1995). “Some reflections on scenarios.” In Scenario Based Design: Envisioning Work and Technology in System Development, edited by Carroll, J. M. pp. 397-399.

Potts, C. (1995). “Using schematic scenarios to understand user needs,” in DIS95, Ann Arbor, MI, pp. 247-256.

Tsai, Y. (1977). “Hierarchical structure of participation in natural groups,” Behavioral Science, vol. 22, pp. 38-40.

Villegas, H. and Williams, M. (1997). Benchmarks for Workspace Awareness in Collaborative Environments. World Multiconference on Systemics, Cybernetics and Informatics, Caracas, Venezuela, International Institute of Informatics and Systemics.

Watts, L., Monk, A., and Daly-Jones, O. (1996). “Inter-Personal Awareness and Synchronization: Assessing the Value of Communication Technologies.” International Journal of Human-Computer Studies, vol. 44, no. 6, pp. 849-873.

Webster's Ninth New Collegiate Dictionary (1985). Merriam-Webster Inc.

� This original IC&V Evaluation Working Group, had members from CMU, focused on the effect of computer tools on group problem solving and communication, especially collaborative writing; the MITRE Corporation, focused on logging and data collection for evaluation and training; NIMA, focused on the testing of methodologies and tools for visualization, networking, and distributed systems; NIST, focused on evaluation methodology and infrastructure, and Amerind (PI Lloyd Brodsky), focused on system dynamics modeling for evaluation of collaborative planning systems. Lynette Hirschman, MITRE, chaired the EWG. The first draft of this report was written by researchers from NIST and MITRE. This updated document Revision 4.0 was written by a team at MITRE, consisting of Laurie Damianos, Jill Drury, Tari Fanderclai, Jeff Kurtz, Lynette Hirschman, and Frank Linton.

3
CONFIDENTIAL

_984925175.xls
service level

		Category		Service		System

						A		B		C		D		E

		Workspace		Internet access

				Workspace integration

		Object Manipulatio/Mgmt		Whiteboard

				Shared text editor

				Object sharing

				Object repository

				Import/Export

				Version control

		Planning / Coordinating		Simultaneous sessions

				Recording

				Replay

		Communication		Paging

				Email

				Audio Conferencing

				Text chat facility

				Encryption

				Multicast video

		Awareness		List of participants

				List of objects

				Attention Getters

capability level

		Category		Capability		System

						A		B		C		D		E

		Capabilities for Work Tasks

		Workspace		Access to objects

				Application Synchronization / Sharing

				Web browsing

				Private workspace

		Object manipulation		Creating / modifying / etc

				Visualization of 2D images and text objects

				Collaborative creation/editing of graphical data

		Object management		Coordinating/controlling, protecting/locking

				Document access control

				Object storing

				Import/export

		Capabilities for Transition Tasks

		Collaboration Coordination Capabilities		Summarization (smart feature)

				Session recording (data capture)

		Collaboration Planning Capabilities		Agenda

				Calendar

				Public or anonymous voting

		Locator Capabilities		Locate possible collaborators

				Locate group members

		Capabilities for Social Protocols

		Awareness indicators		List active session participants

				Video: gesturing

		Meeting conduct		Floor control

				Role management

		Communication		N-way synchronous communication

				Pointing

				Secure communication

		Capabilities for Group Characteristics

		Time frame for collaborative sessions		Synchronous sessions

				Asynchronous sessions

		Location		Remote collaboration

		Computer requirements		Multiple platforms

		Training		Walk-up and use system

_993560795.doc

Collaborative Framework

Contents

Work Tasks

Transition Tasks

Group Characteristics

Social Protocols

Requirement Level

Metrics

Task Outcome

Efficiency, Scalability

User Satisfaction

Security

Technology Level

Service Level

Capability Level

Contents

Shared Workspace

Shared View

N-way Communication

Contents

Whiteboards

Application Sharing

Text Chat

3D Visualization

Contents

Specific Implementations

User Interface

Metrics

Distribution of Participation

Floor Control/Access

Object Sharing Cost

Time on Task

Metrics

Quality of Service

Audio Quality

Video Quality

Image Quality

Metrics

Benchmarks:

Bandwidth

Throughput

Usability Measures

_993558487.doc

Requirements Measures

Capabilities Measures

									 Human

									 Judgement	

Service Measures

Technology Measures

Metrics

Data Collection Methods

_984925105.xls
service level

		Category		Service		System

						A		B		C		D		E

		Workspace		Internet access

				Workspace integration

		Object Manipulation / Management		Whiteboard

				Shared text editor

				Object sharing

				Object repository

				Import/Export

				Version control

		Planning / Coordinating		Simultaneous sessions

				Recording

				Replay

		Communication		Paging

				Email

				Audio Conferencing

				Text chat facility

				Encryption

				Multicast video

		Awareness		List of participants

				List of objects

				Attention Getters

capability level

		Category		Capability		System

						A		B		C		D		E

		Capabilities for Work Tasks

		Workspace		Access to objects

				Application Synchronization / Sharing

				Web browsing

				Private workspace

		Object manipulation		Creating / modifying / etc

				Visualization of 2D images and text objects

				Collaborative creation/editing of graphical data

		Object management		Coordinating/controlling, protecting/locking

				Document access control

				Object storing

				Import/export

		Capabilities for Transition Tasks

		Collaboration Coordination Capabilities		Summarization (smart feature)

				Session recording (data capture)

		Collaboration Planning Capabilities		Agenda

				Calendar

				Public or anonymous voting

		Locator Capabilities		Locate possible collaborators

				Locate group members

		Capabilities for Social Protocols

		Awareness indicators		List active session participants

				Video: gesturing

		Meeting conduct		Floor control

				Role management

		Communication		N-way synchronous comm

				Pointing

				Secure communication

		Capabilities for Group Characteristics

		Time frame for collaborative sessions		Synchronous sessions

				Asynchronous sessions

		Location		Remote collaboration

		Computer requirements		Multiple platforms

		Training		Walk-up and use system

