Submitted for presentation at the Workshop on Evaluation Methods for Ubiquitous Computing, to be held at UBICOMP 2001, Sept. 30-Oct. 2; Atlanta, GA.

Verification through User Value:

Or ‘How to Avoid Drinking Your Own Bathwater in Ubicomp Evaluations’

Christopher A. Miller and Harry B. Funk

Smart Information Flow Technologies
2119 Oliver Avenue South
Minneapolis, Minnesota, 55405-2440 U.S.A.
{cmiller, hfunk}@SIFTech.com
Evaluation of any complex, knowledge-based aiding system is extraordinarily difficult. Ubiquitous computing (ubicomp) systems expand this problem. Evaluation can mean at least two things: the traditional notions of ‘validation’ and ‘verification’. Validation refers to whether or not the system has been built and performs as it was specified. Verification refers to whether or not it provides the benefit intended. Validation is an evaluation of the as-built system against the requirements and subsequent design, while verification is (given that validation was passed), an evaluation of the design against reality. For the purposes of this position paper, we will sidestep the important issues of validation in order to concentrate on the more complicated and, ultimately, more important issues associated with verification.

The problem is that in active research domains such as ubicomp, any design is essentially ‘just’ an educated guess about what correct behavior should be. This has two profound effects on the evaluation process. First, it means that the relative importance of performing good verification is much greater than it might be in a better understood engineering domain. Design becomes the advancing of a hypothesis about correct behavior and verification, the experiment which tests the hypothesis. Second, it means that the definition of ‘correct behavior’ for the system in a test case becomes more problematic, as will be discussed next.

[image: image1.wmf]Stimulus

Response

System Logic

Knowing what is ‘correct behavior’ is not trivial when designing a highly complex, novel technology to be used by diverse human users in varying circumstances. Ubicomp systems will inevitably include logic about how to configure and adapt behavior and information presentation to the set of contexts, devices and user needs they encounter. But, given the complexity and potential interacting factors in the domain, correct answers are rarely obvious for all possible situations. This is confounded by the fact that the human interaction variables which must be accounted for in evaluation are themselves not always rigorously predictable and well understood. A team of designers will take their best and studied approach to creating logic (and implementing it in methods and metrics) that computationally determines correct behavior for the system under a range of circumstances. This is the best, most formal prediction available for generating correct behavior across contexts; if there were a better one, the team would have used it. But, this leaves the problem of identifying correct behavior in a given evaluation scenario by some method different from, and ideally better than, the computational method embedded in the newly-designed ubicomp system. We refer to this as the problem of circularity in development and test. It could also be called ‘how do we avoid drinking our own bathwater?’

Fortunately, we’ve lived through this problem before in developing adaptive systems in complex, high-criticality, real world domains like piloting and industrial process control—in particular, the flight test of the U.S. Army’s Rotorcraft Pilot’s Associate and the evaluation of DARPA’s Agile Information Control Environment. In those domains, as in ubicomp, we formalized computational approaches to adapting the presentation of information and the behavior of automation to the context of use, user and available devices. Lessons learned there should apply here as well.

The situation is illustrated in the figure below. For some set of stimulus contexts, the act of system design is the creation of a logic which provides a set of output responses. The problem is that there is typically no true alternative to the logic or algorithms embedded in the system for determinng what any general probe stimulus should produce as a response. Hence, we are tempted to use the same logic to identify correct responses for test that we have embedded in the system—but this is circular.

Fortunately, the problem of circularity only applies to the general case, not always to the specific. While it is frequently impossible to acquire a better (or even different) model of correct behavior across the full set of context stimuli, it may be possible in some specific cases for us to know what is right or wrong. To the degree that the system behaves inappropriately where an answer is known, then it is not fully verified. If we can identify a robust and representative set of verification cases that adequately sample the domain, and if the system behaves appropriately on them, then we have some confidence that it is verified.

So how do we know what is appropriate behavior—even for the specific case—in a way independent from that implemented? A saving grace of ubicomp systems is that they have a firm bottom line. In order to be verified, a design must provide the benefit intended. For any human-in-the-loop system is that it must provide user value. User value can come through either (1) a more satisfying user experience, (2) improved task performance, or (3) an expanded range of task performance (i.e., the ability to do things impossible to do before, or do them in locations previously impossible)—or through appropriate combinations of these factors. In other words, if we can demonstrate enhanced user value with a ubicomp system over a comparative case without one, then de facto we have something worth having—and if it is the value intended, then we have verified (at least that part of) the system.

Thus, we argue that verification of ubicomp systems must be done with reference to a well-chosen, representative set of user-in-the-loop scenarios for which appropriate and inappropriate behaviors have been identified with reference to user value criteria. Metrics for these criteria can frequently be established independently of the algorithms used in the ubicomp system, at least for the specific scenario under examination. For example, user satisfaction can be derived from subjective Likert-scale based ratings or through the use of the demand, frustration and effort subscales of NASA’s Task Load Index (TLX) rating method. Improved task performance metrics will be domain specific, but they should likely include factors such as error rates and time of task performance. Expanded range metrics might include an analysis of the times and locations in which tasks are performed. In each case, the comparison must be made between the ubicomp system and some realistic baseline method that is of interest.

The result, then, will be a series of data points determining whether the algorithms encoded in the ubicomp system are providing value in the specific cases chosen. Furthermore, we will have avoided the problem of circularity by obtaining objective performance criteria outside of the implemented ubicomp reasoning. The problem now becomes, however, choosing a useful and sufficient set of points, since it is generally impossible to test the full space of either stimuli or responses. This is the familiar ‘bed of nails’ approach to testing as illustrated in the figure—we know a point in the stimulus space should be connected with a point in the response space, but we are limited by cost and time in the number of ‘nails’ we can drive through the system in order to test. So how do we chose good points to probe?

One set of points can come from initial design. Complex, adaptive systems such as ubicomp are typically built by an initial round of knowledge acquisition and usability interviews that, ultimately, yield use cases. In creating these requirements, we have typically captured how users think they want the system to behave at specific points. Thus, one weak set of verification cases can be based on those used in initial design, provided these were created with user input. This set can, of course, be made stronger by determining, through user-in-the-loop simulation and testing the set of responses that actually produce user value, since these may differ from what the user says s/he wants. Fortunately, since we know the specifications of the designed system, we needn’t treat the creation of test cases as pure black-box evaluation—that is, we needn’t choose test points based only on their distribution in the stimulus and response spaces. Instead, we can choose cases specifically because they test components of system reasoning that designers believe are significant or risky,—as illustrated by the central probe passing through the internal component box in the figure—or to ensure coverage of all system components.

A problem is that humans will adapt their performance and their very definition of the job to the new technology. Hence evaluations should pose a set of well-designed problem scenarios, but allow free exploration of them by human users. Experience with the system over time may be important to give users a chance to learn and adapt to the new technology. Wizard of Oz approaches which simulate the appearance and behavior of the technology before it exists prove very useful since they enable the anticipation of problems well before they exist. For similar reasons, it is important to be able to establish a flexible hierarchy of metrics to adapt to sometimes unpredictable user-definitions of goals. For example, choosing time to perform a task as a criterion for success may prove problematic if the new technology enables users to explore more possible task methods or decisions—task duration may not show an improvement, but task satisfaction and perhaps quality of decisions will improve, and error rates may decline.

In summary, we believe that there is no substitute for user-in-the-loop evaluations of ubicomp systems since, not only does this get at the bottom line of user value, but it is also one of the few methods available to avoid the problem of circularity in verification. Nevertheless, there are substantial problems in selecting, constructing, running and interpreting such evaluations. We will be able to provide lessons learned from our work in developing and fielding adaptive aiding systems in high-criticality real-world domains in the context of the workshop.

�

