
Evaluating Distributed Query Processing Systems for Ubiquitous Computing∗ 
 

Paul Castro1, Alvin Chen, Ted Kremenek, Richard Muntz 
Department of Computer Science 

University of California, Los Angeles 
Los Angeles, CA 90095 

 
Fundamentally, ubiquitous computing applications often retrieve data from previously unknown sources. 
The current application paradigm, however, assumes that applications know the address of a data source 
before they can query it. Ubiquitous computing will utilize countless numbers of dynamic data sources, 
requiring new approaches to query, locate, process, and interpret data. Furthermore, large numbers of 
widely distributed clients will concurrently access arbitrary subsets of this data. 
 
Today, several distributed query-processing architectures exist to address pieces of this problem. For 
example, peer-to-peer architectures such as Gnutella allow clients to locate remote files through keyword-
based queries.  Other systems, like INS, SDS, Gryphon, and VIA*, allow clients to query for data based 
on attribute vectors. In all of these systems, a client need only declare its data interest, and the distributed 
query-processing architecture handles data retrieval. 
 
It is very timely to take a global view of these architectures and make some assessment, both individually 
and comparatively, as to their effectiveness in processing queries for different application workloads.  
Unfortunately, a comparative study of these architectures is currently not possible because of the lack of 
detail about their operating environments as well as the absence of coherent performance metrics. While it 
is tempting to dictate a single application and environment for a comparative study, we believe a more fair 
and complete approach takes the following perspective: 
 

• Ubiquitous computing applications will generate both data and queries for data.  The workloads 
generated by different applications will induce different types of stress on the proposed 
architectures. By “stress” we mean a high utilization of resources, such as bandwidth or processing 
time. Today, little data on the workloads of these developing systems exist, and it may be 
inappropriate to optimize a given architecture for the workloads of current applications (e.g., 
WWW, Gnutella).  

• Distributed query-processing architectures will enable many ubiquitous computing applications, 
but it is unlikely that a single architecture will have the capability to support all applications. We 
need to be able to classify architectures by the types of workloads they can support well. Of 
course, it is only appropriate to compare architectures this way if the workloads we generate are 
themselves unified in a coherent model. 

 
In order to fairly and systematically evaluate competing architectures, it is critical that we formally define 
the salient features of ubiquitous computing applications from a data management perspective. From this 
we can construct a realistic workload model that enables a comprehensive and fair testing of support 
infrastructures for ubiquitous computing. This workload model should have the ability to synthesize a 
complete range of possible application workloads that are parameterized along several dimensions. We 
propose the following dimensions: 
 

• Data value distribution – The data values instantiated and the rates at which they change greatly 
influence the performance of some architectures. For example, VIA* achieves query-processing 

                                                 
∗ Authors listed alphabetically 
1 IBM T.J. Watson Research Center, Hawthorne, NY. 



efficiency by clustering data based on similarity of attribute values. If the underlying data do not 
exhibit much similarity, then VIA* cannot cluster efficiently, and query-processing reduces to 
flooding. 

• Query distribution – It is obvious that the distribution of queries and the rate at which queries are 
initiated will affect performance.  Some systems correlate data distribution with query distribution 
to control these characteristics, while other systems restrict the set of available queries, thus 
limiting their impact on system design.  

• Physical location of data – Some architectures can take advantage of the physical locality of data 
to construct lower-cost overlay networks for processing queries. For example, a data source in INS 
will connect to the system via the closest access point. Alternatively, hashing schemes distribute 
data randomly throughout the network. 

• Origin of query – This is analogous to the physical location of data.  A query’s origin can impact 
the organization and performance of a distributed query-processing architecture. 

• Selectivity of queries for given data – The selectivity of a query also affects the performance of 
the system. Intuitively, a query that incorporates multiple data sources will generate more work for 
the system. 

• Continuous queries vs. “snapshot” queries – A snapshot query needs to be processed once by 
the architecture and can then be thrown away. A continuous query needs to be processed over 
some period of time and may require dynamic bindings between data sources and clients.   

• Disconnection of clients and data sources – Many ubiquitous computing clients may 
communicate over unreliable networks, and query-processing architectures have different ways of 
handling this.  For example, all objects in OceanStore are persistent.  When a client reconnects to 
the network, OceanStore replicates the object “closer” to the new location of the client to reduce 
latency. 

• Correlation between application queries and the data they carry – File-sharing schemes like 
Gnutella rely on replication of data among clients. Sometimes a client that queries for data 
becomes a source for the data after the query is satisfied.  This type of replication improves the 
performance of Gnutella for retrieving popular files. Complex interactions like this have bearing 
on the overall performance of the system. 

• Mobility of applications and data sources – Clearly, ubiquitous applications may be 
implemented on mobile hosts, and the data sources they query may be mobile as well.  It is 
important to define appropriate models of mobility for data sources and clients.  

• Correlation between application activity and network topology – A number of tools are 
available for generating instances of statistically realistic wired network topologies. A complete 
model should correlate the previously described workload dimensions with the network topology.  
It is intuitive that the characteristics of the particular network topology generated will correlate in 
some manner with the traffic workload. 

 
This is not an exhaustive list of dimensions.  Ubiquitous computing applications will most likely generate 
a complex set of workloads, and our ability to characterize and synthesize them is an important and 
fundamental activity.  Equally important will be our ability to evaluate the results of our experiments 
using these workloads to optimize our designs. 
 
We have begun work on designing a model to synthesize workloads and are actively constructing a 
simulator to test distributed query processing architectures. We hope that this workload model and 
simulator will be a useful tool for many researchers to conduct performance evaluations and aid in 
designing optimizations for their systems. 


